Roberto Santana and Unai Garciarena
Department of Computer Science and Artificial Intelligence
University of the Basque Country
R. Salakhutdinov. Learning deep generative models. Annual Review of Statistics and Its Application. Vol. 2. Pp. 361-385. 2015.
R. Salakhutdinov. Learning deep generative models. Annual Review of Statistics and Its Application. Vol. 2. Pp. 361-385. 2015.
VGG in TensorFlow. 2016.
H. Wang, B. Raj, and E. P. Xing.On the Origin of Deep Learning. arXiv preprint arXiv:1702.07800. 2017.
Figure: A. Deshpande A Beginner's Guide To Understanding Convolutional Neural Networks.
\[ v = \left | \frac{\sum_{i=1}^{q}\sum_{j=1}^{q} f_{i,j}d_{i,j}}{F} \right | \]
M. D. Zeiler and R. Fergus Visualizing and Understanding Convolutional Networks. In European conference on computer vision. Pp. 818-833. Springer, Cham. 2014.
V. Dumoulin and F. Visin. A guide to convolution arithmetic for deep learning. arXiv preprint arXiv:1603.07285. 2016.
Y. LeCun et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE 86.11. Pp. 2278-2324. 1998.
\[ o = \left \lfloor \frac{i+p-k}{s} \right \rfloor + 1 \]
Figure: A. Deshpande A Beginner's Guide To Understanding Convolutional Neural Networks.
Figure: A. Deshpande A Beginner's Guide To Understanding Convolutional Neural Networks.
Layer | Type | Maps | Size | Kernel size | Stride | Activation |
---|---|---|---|---|---|---|
Out | Fully Connected | - | 10 | - | - | RBF |
F6 | Fully Connected | - | 84 | - | - | tanh |
C5 | Convolution | 120 | 1x1 | 5x5 | 1 | tanh |
S4 | Avg. Pooling | 16 | 5x5 | 2x2 | 2 | tanh |
C3 | Convolution | 16 | 10x10 | 5x5 | 1 | tanh |
S2 | Avg. Pooling | 6 | 14x14 | 2x2 | 2 | tanh |
C1 | Convolution | 6 | 28x28 | 5x5 | 1 | tanh |
In | Input | 1 | 32x32 | - | - | - |
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE. 1998.
N. Srivastava et al. Dropout: a simple way to prevent neural networks from overfitting.Journal of machine learning research. Vol. 15 No. 1. Pp. 1929--1958. 2014.
A. Geron. Hands-On Machine Learning with Scikit-Learn and TensorFlow. Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly. 2017.
A. Geron. Hands-On Machine Learning with Scikit-Learn and TensorFlow. Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly. 2017.
P. Eckersley and Y. Nasser. AI Progress Measurement. Measuring the Progress of AI Research. Accessed 2017.
A. Canziani, A. Paszke, E. Culurciello. An Analysis of Deep Neural Network Models for Practical Applications. arXiv:1605.07678v4. 2017.
Figure: A. Deshpande A Beginner's Guide To Understanding Convolutional Neural Networks.
A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Pp. 1097-1105. 2012.
A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Pp. 1097-1105. 2012.
Layer | Type | Maps | Size | Kernel size | Stride | Padding | Activation |
---|---|---|---|---|---|---|---|
Out | Fully Connected | - | 1000 | - | - | - | Softmax |
F9 | Fully Connected | - | 4096 | - | - | - | ReLu |
F8 | Fully Connected | - | 4096 | - | - | - | ReLu |
C7 | Convolution | 256 | 13x13 | 3x3 | 1 | SAME | ReLU |
C6 | Convolution | 384 | 13x13 | 3x3 | 1 | ? | ReLU |
C5 | Convolution | 384 | 13x13 | 3x3 | 1 | SAME | ReLU |
S4 | Max. Pooling | 256 | 13x13 | 3x3 | 2 | VALID | - |
C3 | Convolution | 256 | ? | 5x5 | 1 | SAME | ReLU |
S2 | Max. Pooling | 96 | 27x27 | 3x3 | 2 | VALID | - |
C1 | Convolution | 96 | ? | 11x11 | 4 | SAME | ReLU |
In | Input | 3(RGB) | 224x224 | - | - | - | - |
A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Pp. 1097-1105. 2012.
A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Pp. 1097-1105. 2012.
A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Pp. 1097-1105. 2012.
P. Eckersley and Y. Nasser. AI Progress Measurement. Measuring the Progress of AI Research. Accessed 2017.
H. Wang, B. Raj, and E. P. Xing. On the Origin of Deep Learning. arXiv preprint arXiv:1702.07800. 2017.
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature 521.7553 (2015): 436-444. 2015.
Wu et al. 3d shapenets: A deep representation for volumetric shapes.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Pp. 1912-1920. 2015.
H. Altae-Tran, B. Ramsundar, A. S. Pappu, and V. Pande Low data drug discovery with one-shot learning.ACS central science. Vol. 3. No. 4. 283. 2017.
J. de Wit and D. Hammack 2nd place solution for the 2017 national datascience bowl. Kaggle Competition. 2017.
J. de Wit and D. Hammack 2nd place solution for the 2017 national datascience bowl. Kaggle Competition. 2017.
F. Yu. Large-scale Scene Understanding Challenge. 2016.
F. Yu. Large-scale Scene Understanding Challenge. 2016.
M. Jiang, S. Huang, J. Duan, and Q. Zhao. Salicon: Saliency in context.In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Pp. 1072-1080. 2015.
Tsung-Yi Lin et al. Joint Workshop of the COCO and Places Challenges at ICCV 2017.
L. A. Gatys, A. S. Ecker, and M. Bethge. A Neural Algorithm of Artistic Style. arXiv preprint arXiv:1508.06576. 2015.